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Language and RL Tasks Share Compositional Structure

e “Serve breakfast with plain
toast and ketchup...”

e Neural networks struggle to
generalize compositionally’.

e Compose existing policies to
perform tasks with minimal
training.

1. Lake, B. M., & Baroni, M. (2018). Generalization without systematicity: On the compositional skills of sequence-to-
sequence recurrent networks. Proceedings of the 35th International Conference on Machine Learning.
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e Add a goal g to the Q function.

e \WVF represents how to achieve Qr (S, g, a) = ]E? F(St, g, at)
all goals and their value !

e |earn one WVF for each task in . :
the environment we wish to
compose.
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e Add a goal g to the Q function.

e WVF represents how to achieve Qn (S, g, a) = ]E? 7(8,:, 9, at)
all goals and their value

e |earn one WVF for each task in —t_O :
the environment we wish to
compose.

e Train by penalizing the agent for _ FMIN ifg *+SEG
entering a terminal state for T(S, 9, a) =

r(s,a) otherwise
another goal.

1. Nangue Tasse, G., James, S., & Rosman, B. (2020). A Boolean task algebra for reinforcement learning. Advances in Neural Information Processing Systems, 33, 17279-17290.
2. Nangue Tasse, G., James, S., & Rosman, B. (2022, June). World value functions: Knowledge representation for multitask reinforcement learning. Paper presented at the 5th Multi-
disciplinary Conference on Reinforcement Learning and Decision Making (RLDM).



World Value Functions (WVF) (Tasse et al. 2020, 2022)

e Compose these WVFs.
o Arbitrary expressions of AND, OR, and NOT.
o Can now solve a combinatorial number of goal reaching tasks

For AND (conjunction) the composed WVF is given by:

QINQE: SxGxA—R
(s,9,a) = min{Q7 (s, g,a),Q3(s,g,a)}
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BabyAl (Chevalier-Boisvert et al. 2019)

e Gridworld domain consisting of
navigation tasks.

“Pick up a red object” A “Pick up a key”
“Pick up a blue object” v “Pick up the ball”

e Modified task set to include 162 goal
reaching tasks that can be solved
through AND, OR, and NOT expressions
over object attributes.
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Compositionally-Enabled RL and Language Agent (CERLLA)

e How can we use compositionality of language + value functions to generalise
better?

e Must learn mapping from natural language to WVF composition

e |dea: Use language models to translate instruction into formal language /
boolean symbols (e.g. semantic parsing).

e But these symbols are arbitrary (just an index over WVFs) - how do we know
translation is correct?

e |dea: Use environment feedback to learn the translation!

Core challenge: CERLLA learns to parse input commands to arbitrary symbols
representing WVFs with unknown semantics, using environment rollouts, a much
noisier form of supervision than is typical for weakly supervised parsing methods.
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Mission
pick up a red object=>
that is not a ball

LLM
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Compositionally-Enabled RL and Language Agent (CERLLA)
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Compositionally-Enabled RL and Language Agent (CERLLA)

In-Context Examples Success C
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Experiments

e 162 tasks, learned simultaneously from vision and language.
e Evaluate sample efficiency, and generalization, comparing:
o CERLLA (Qurs): using OpenAl’'s GPT-4 LM
m CERLLA GPT-3.5

o Two non-compositional baseline DQNs
m Baseline: RNN + CNN
m LM Baseline: pretrained sentence embedding language model + CNN

o Qracle Agent with access to the ground-truth compositional
expressions for each task.




Sample Efficiency
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Generalization
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Conclusion

Introduces CERLLA, a novel semantic parsing
method based on in-context learning and that
learns from environment feedback.
Simultaneously learns and solves a large collection
of 162 compositional vision-language-RL tasks.
Outperforms non-compositional baselines with
respect to sample efficiency and generalization to
held-out tasks.
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